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1 Introduction

The diffusion-advection-reaction equation is
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where U = U(s,t) is the concentration, which varies with the position s and time t; a is the velocity
coefficient; D is the diffusion coefficient; p is the source; and g is the degradation rate.
The parabolic map f : R? — R? is written as
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the Jacobian of which is
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The metric is then ) )
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The Laplacian is then
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In general if g;; = h?éij we have /det g = [[ h;. So the Laplacian in 2D is now
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To make the calculation easier we can immediately move to a frame of reference that follows the
growth of the plant with the change of variables
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motivated from the velocity relation $ = as. We will then be interested in transforming the equation
from U(s,r,t) to V(&,r,t). Using the chain rule
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So Equation (1.1) becomes
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2 1D

In 1D we have
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If we assume that h(€) takes the form h(€) = s = e then we have
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Looking at the homogeneous part and assuming the V() is separable we can write V' (§,t) =
E(&)T(t) and find
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where ) is some constant. The T'(t) part becomes
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Then for Z(£) we have
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which is solvable in terms of the parabolic cylinder function D,(z) as
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Combining Z(§) and T'(t) with the trivally obtained particular solution Vj,(§,t) = g we obtain

where ¢; and co have been redefined to absorb the factor of Tj.

3 2D

3.1 Constant Metric

Suppose that h; are constants. The transformed expression Equation (1.9) becomes
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This can be solved analytically using Fourier transforms and working in the Fourier space spanned by
= (ke, k-)T. We will use the convention that the Fourier transforms of the function between the two
spaces are
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Moving Equation (3.1) to Fourier space and examining the homogeneous part (p = 0) we have
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Integrating the homogeneous equation
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When also including the inhomogeneous source Equation (3.1) in Fourier space becomes
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which using the complementary function results in the integrating factor
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having already used k = 0 in the second term.
Suppose we have a Gaussian packet as our initial condition
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which in Fourier space is
i - 00 0 62 ‘ T2 )
V(k,0) =V, / de / dr exp ( po Zkgﬁ) exp ( e z/m> , (3.8)

3



then using the Gaussian integral
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this initial condition in Fourier space becomes
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Combining this with the general solution in Equation (3.6) (and only focusing on the complementary
solution for convenience) we obtain
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To move back to position space we use the Fourier transform in Equation (3.2) and the Gaussian
integral to obtain
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3.2 Small a

For the parabolic map Equation (1.9) becomes
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where p := V/s2 + 12 = \/€2¢2at 4 12, To use perturbation theory we say that a < 1 and V(&,7,t) =
Vo(§,r t) + aVi(&,r t). Expanding in a first of all we obtain
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3.2.1 0O(a")

At O(a) we are examining a system without growth so both the ¢ and r directions are treated on
equal footing, that is we have an O(2) symmetry group. The resulting expression is
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Due to the symmetry now present it is natural to use polar coordinates (), ) with A2 = &2 4 r2. Using
the Cartesian Laplacian in polar coordinates
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There is only one term that depends on © and so all the # dependence must be a constant. We choose
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where m is some constant. This possesses oscillatory solutions of the form ©(f) = ALe™™?. One can
do the same with the time dependence, although in this case we can include the degradation term to
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for some arbitrary constant u. This can be integrated to find
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Substituting the constants into Equation (3.18) we obtain
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which has solutions in terms of Bessel functions of the first kind J,,(z) and gamma functions I'(x) as
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Combining everything we obtain
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for the complementary solution, having rescaled constants set by boundary conditions.



Including the inhomogeneous term A?p we form the ansatz for the particular solution V= a)\? +
B+ . Substituting this into Equation (3.17) we obtain
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which implies @ = 0, 3 = 0, v = 2. Therefore the full O(a") solution is
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3.2.2 O(a')

If we say that the O(a®) homogeneous dynamics are encapsulated by £ = (£2+12)(0; +g) — D((‘)é2 +02)
then the O(a') expression is
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where the RHS inhomogeneous part is responsible for the breaking of the O(2) symmetry. Clearly,
Vo = —(g + 1) V. Furthermore, using the Jacobian from Cartesian to Polar coordinates
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and the fact that the derivative of the Bessel function of the first kind with respect to its argument can
be expressed as
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we can find
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where L i= /5. So we then have
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The full expression now takes the form
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