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1 Introduction

The diffusion-advection-reaction equation is

∂U

∂t
+ as

∂U

∂s
= D∇2U + p− gU (1.1)

where U = U(s, t) is the concentration, which varies with the position s and time t; a is the velocity
coefficient; D is the diffusion coefficient; p is the source; and g is the degradation rate.

The parabolic map f : R2 → R2 is written as

s 7→x = sr

r 7→y =
1

2
(r2 − s2)

(1.2)

the Jacobian of which is

J =

(∂x
∂r

∂x
∂s

∂y
∂r

∂y
∂s

)
=

(
s r
r −s

)
. (1.3)

The metric is then

g = JTJ =

(
s2 + r2 0

0 s2 + r2

)
. (1.4)

The Laplacian is then

∇2U =
1
√
g
∂i(

√
ggij∂jU)

=
1

s2 + r2
(∂2

s + ∂2
r )U ∵

√
det g = s2 + r2 .

(1.5)

In general if gij = h2jδij we have
√
det g =

∏
j
hj . So the Laplacian in 2D is now

∇2U =
1

h1h2

(
∂1

(h2
h1

∂1U
)
+ ∂2

(h1
h2

∂2U
))

(1.6)

To make the calculation easier we can immediately move to a frame of reference that follows the
growth of the plant with the change of variables

s = ξeat (1.7)

motivated from the velocity relation ṡ = as. We will then be interested in transforming the equation
from U(s, r, t) to V (ξ, r, t). Using the chain rule

∂U

∂t
=
∂xj

∂t
∂jV = ∂tV − aξ∂ξV

∂U

∂s
=e−at∂V

∂ξ

∂2U

∂s2
=e−2at∂

2V

∂ξ2

(1.8)

So Equation (1.1) becomes

∂V

∂t
=

D

hshr

(
e−2at∂ξ

(hr
hs

∂ξV
)
+ ∂r

(hs
hr

∂rV
))

+ p− gV . (1.9)
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2 1D

In 1D we have
∂V

∂t
=

D

h2(ξ)
e−2at∂2

ξV + p− gV . (2.1)

If we assume that h(ξ) takes the form h(ξ) = s = ξeat then we have

∂V

∂t
=

D

ξ2
e−4at∂2

ξV + p− gV . (2.2)

Looking at the homogeneous part and assuming the V (ξ, t) is separable we can write V (ξ, t) =
Ξ(ξ)T (t) and find

e4at
(∂tT

T
+ g
)
=

D

ξ2
∂2
ξΞ

Ξ
= λ , (2.3)

where λ is some constant. The T (t) part becomes

T̂

T0

dT

T
=

tˆ

t0

dt (λe−4at − g)

ln
T

T0
=− λ

4a

(
e−4at − e−4at0

)
− g(t− t0)

T (t) =T0e
−λϕ(t)−g(t−t0) ; ϕ(t) :=

e−4at0 − e−4at

4a
.

(2.4)

Then for Ξ(ξ) we have

∂2
ξΞ =

λ

D
ξ2Ξ , (2.5)

which is solvable in terms of the parabolic cylinder function Dv(z) as

Ξ(ξ) = c1D− 1
2

(
x
√
2

4

√
λ

D

)
+ c2D− 1

2

(
ix
√
2

4

√
λ

D

)
. (2.6)

Combining Ξ(ξ) and T (t) with the trivally obtained particular solution Vp(ξ, t) =
p
g we obtain

V (ξ, t) =

(
c1D− 1

2

(
x
√
2

4

√
λ

D

)
+ c2D− 1

2

(
ix
√
2

4

√
λ

D

))
e−λϕ(t)−g(t−t0) +

p

g
, (2.7)

where c1 and c2 have been redefined to absorb the factor of T0.

3 2D

3.1 Constant Metric

Suppose that hi are constants. The transformed expression Equation (1.9) becomes

∂V

∂t
= D

(
1

h2s
e−2at∂2

ξV +
1

h2r
∂2
rV

)
+ p− gV . (3.1)
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This can be solved analytically using Fourier transforms and working in the Fourier space spanned by
k = (kξ, kr)

T . We will use the convention that the Fourier transforms of the function between the two
spaces are

Ṽ (k, t) =

∞̂

−∞

dξ

∞̂

−∞

dr V (ξ, r, t)e−i(kξξ+krr) ,

V (k, t) =

¨

R2

d̄2k Ṽ (k, t)ei(kξξ+krr) .

(3.2)

Moving Equation (3.1) to Fourier space and examining the homogeneous part (p = 0) we have

∂tṼ = −
(D
h2s

e−2atk2ξ +
D

h2r
k2r + g

)
Ṽ . (3.3)

Integrating the homogeneous equation

V̂̃

Ṽ0

dṼ

Ṽ
=−

tˆ

t0

dt
(D
h2s

e−2atk2ξ +
D

h2r
k2r + g

)

ln
( Ṽ
Ṽ0

)
=− D

h2s
k2ξϕ(t)−

(D
h2r

k2r + g
)
(t− t0) ; ϕ(t) :=

e−2at0 − e−2at

2a

Ṽc(k, t) =Ṽ0(k, 0) exp

(
− D

h2s
k2ξϕ(t)−

(D
h2r

k2r + g
)
(t− t0)

)
.

(3.4)

When also including the inhomogeneous source Equation (3.1) in Fourier space becomes

∂tṼ = −
(D
h2s

e−2atk2ξ +
D

h2r
k2r + g

)
Ṽ + pδ̄2(k) , (3.5)

which using the complementary function results in the integrating factor

Ṽ (k, t) =Ṽc(k, t) + pδ̄2(k)

tˆ

t0

dt̃ e−g(t̃−t0)

Ṽ (k, t) =Ṽ0(k, 0) exp

(
− D

h2s
k2ξϕ(t)−

(D
h2r

k2r + g
)
(t− t0)

)
+

p

g
δ̄2(k)

(
1− e−g(t−t0)

)
,

(3.6)

having already used k = 0 in the second term.
Suppose we have a Gaussian packet as our initial condition

V (ξ, r, 0) = V0 exp
(
− ξ2

4σ2
ξ

− r2

4σ2
r

)
, (3.7)

which in Fourier space is

Ṽ (k, 0) = V0

∞̂

−∞

dξ

∞̂

−∞

dr exp
(
− ξ2

4σ2
ξ

− ikξξ
)
exp

(
− r2

4σ2
r

− ikrr
)
, (3.8)
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then using the Gaussian integral

∞̂

−∞

dx exp(−ax2 + bx) = e
b2

4a

√
π

a
(3.9)

this initial condition in Fourier space becomes

Ṽ (k, 0) = V0e
−σ2

ξk
2
ξe−σ2

rk
2
r . (3.10)

Combining this with the general solution in Equation (3.6) (and only focusing on the complementary
solution for convenience) we obtain

Ṽc(k, t) = V0e
−g(t−t0) exp

(
− k2ξ

(D
h2s

ϕ(t) + σ2
ξ

))
exp

(
− k2r

(D
h2r

(t− t0) + σ2
r

))
. (3.11)

To move back to position space we use the Fourier transform in Equation (3.2) and the Gaussian
integral to obtain

V (ξ, r, t) =V0τ
−2e−g(t−t0)

∞̂

−∞

dkξ exp

(
− k2ξ

(D
h2s

ϕ(t) + σ2
ξ

)
+ ikξξ

)

·
∞̂

−∞

dkr exp

(
− k2r

(D
h2r

(t− t0) + σ2
r

)
+ ikrr

)

+
p

g

¨

R2

d̄2k δ̄2(k)
(
1− e−g(t−t0)

)
=

V0e
−g(t−t0)

2τ

√(
D
h2
s
ϕ(t) + σ2

ξ

)(
D
h2
r
(t− t0) + σ2

r

)
· exp

(
− ξ2

4
(

D
h2
s
ϕ(t) + σ2

ξ

)) exp

(
− r2

4
(

D
h2
r
(t− t0) + σ2

r

))+
p

g
(1− e−g(t−t0)) .

(3.12)

3.2 Small a

For the parabolic map Equation (1.9) becomes

∂tV =
D

ρ2

(
e−2at∂2

ξV + ∂2
rV
)
, (3.13)

where ρ :=
√
s2 + r2 =

√
ξ2e2at + r2. To use perturbation theory we say that a ≪ 1 and V (ξ, r, t) =

V0(ξ, r, t) + aV1(ξ, r, t). Expanding in a first of all we obtain

∂tV =
D

ξ2 + r2 + 2atξ2

(
(1− 2at)∂2

ξV + ∂2
rV
)
+ p− gV(

(ξ2 + r2)(∂t + g)−D(∂2
ξ + ∂2

r ) + a(2Dt∂2
ξ + ∂t + g)

)
V = (ξ2 + r2 + 2atξ2)p .

(3.14)
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3.2.1 O(a0)

At O(a0) we are examining a system without growth so both the ξ and r directions are treated on
equal footing, that is we have an O(2) symmetry group. The resulting expression is(

(ξ2 + r2)(∂t + g)−D(∂2
ξ + ∂2

r )
)
V0 = (ξ2 + r2)p . (3.15)

Due to the symmetry now present it is natural to use polar coordinates (λ, θ) with λ2 ≡ ξ2 + r2. Using
the Cartesian Laplacian in polar coordinates

∂2
ξ + ∂2

r = ∂2
λ +

1

λ
∂λ +

1

λ2
∂2
θ (3.16)

we arrive at (
λ2(∂t + g)−D(∂2

λ +
1

λ
∂λ +

1

λ2
∂2
θ )
)
V0 = λ2p . (3.17)

Then focusing on the homogeneous LHS and using the separation of variables V0(λ, θ, t) = T (t)Λ(λ)Θ(θ)
we obtain

λ2∂tT

T
+ λ2g −D

(
∂2
λΛ

Λ
+

∂λΛ

λΛ
+

∂2
θΘ

λ2Θ

)
= 0 . (3.18)

There is only one term that depends on Θ and so all the θ dependence must be a constant. We choose

∂2
θΘ = −m2Θ (3.19)

where m is some constant. This possesses oscillatory solutions of the form Θ(θ) = A±e
±imθ. One can

do the same with the time dependence, although in this case we can include the degradation term to
and select

∂tT

T
+ g = −µ , (3.20)

for some arbitrary constant µ. This can be integrated to find

T (t) = Be−(g+µ)t . (3.21)

Substituting the constants into Equation (3.18) we obtain

λ2 µ

D
+

∂2
λΛ

Λ
+

∂λΛ

λΛ
− m2

λ2
= 0 , (3.22)

which has solutions in terms of Bessel functions of the first kind Jn(z) and gamma functions Γ(x) as

Λ(λ) = c−J−m
2

(
λ2

2

√
µ

D

)
Γ
(
1− m

2

)
+ c+Jm

2

(
λ2

2

√
µ

D

)
Γ
(
1 +

m

2

)
. (3.23)

Combining everything we obtain

V c
0 (λ, θ, t) =e−(g+µ)t(eimθ +Ae−imθ)

·
(
c−J−m

2

(
λ2

2

√
µ

D

)
Γ
(
1− m

2

)
+ c+Jm

2

(
λ2

2

√
µ

D

)
Γ
(
1 +

m

2

)) (3.24)

for the complementary solution, having rescaled constants set by boundary conditions.
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Including the inhomogeneous term λ2p we form the ansatz for the particular solution V p
0 = αλ2 +

βλ+ γ. Substituting this into Equation (3.17) we obtain

λ2g(αλ2 + βλ+ γ)−D
(
2α+ 2α+

β

λ

)
= λ2p , (3.25)

which implies α = 0, β = 0, γ = p
g . Therefore the full O(a0) solution is

V0(λ, θ, t) =e−(g+µ)t(eimθ +Ae−imθ)

·
(
c−J−m

2

(
λ2

2

√
µ

D

)
Γ
(
1− m

2

)
+ c+Jm

2

(
λ2

2

√
µ

D

)
Γ
(
1 +

m

2

))
+

p

g
.

(3.26)

3.2.2 O(a1)

If we say that the O(a0) homogeneous dynamics are encapsulated by L = (ξ2+r2)(∂t+g)−D(∂2
ξ +∂2

r )

then the O(a1) expression is
LV1 = 2tξ2p− (2Dt∂2

ξ + ∂t + g)V0 , (3.27)

where the RHS inhomogeneous part is responsible for the breaking of the O(2) symmetry. Clearly,
∂tV0 = −(g + µ)V c

0 . Furthermore, using the Jacobian from Cartesian to Polar coordinates

Jλθ
ξr =

( ξ
λ

r
λ

− r
λ2

ξ
λ2

)
(3.28)

and the fact that the derivative of the Bessel function of the first kind with respect to its argument can
be expressed as

∂zJn(z) =
1

2
(Jn−1(z)− Jn+1(z)) (3.29)

we can find

∂ξe
imθ =

∂θ

∂ξ
imeimθ = − imr

λ2
eimθ

∂2
ξ e

imθ =− m2r2

λ4
eimθ + 2imrλ−3∂λ

∂ξ
eimθ =

2imrξ −m2r2

λ4
eimθ

∂ξJn
(
Lλ2

)
=
(
Jn−1

(
Lλ2

)
− Jn+1

(
Lλ2

))
λL

∂λ

∂ξ

=
(
Jn−1

(
Lλ2

)
− Jn+1

(
Lλ2

))
ξL

∂2
ξJn
(
Lλ2

)
=
((

Jn−2

(
Lλ2

)
− 2Jn

(
Lλ2

))
+ Jn+2

(
Lλ2

))
ξ2L2

+
(
Jn−1

(
Lλ2

)
− Jn+1

(
Lλ2

))
L ,

(3.30)
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where L := 1
2

√
µ
D . So we then have

e(g+µ)t∂2
ξV0 =λ−4

(
(2imrξ −m2r2)eimθ +A(−2imrξ −m2r2)e−imθ

)
·
(
c−J−m

2
(Lλ2)Γ

(
1− m

2

)
+ c+Jm

2
(Lλ2)Γ

(
1 +

m

2

))
+ (eimθ +Ae−imθ)

(
c−

[((
J−m

2
−2

(
Lλ2

)
− 2J−m

2

(
Lλ2

))
+ J−m

2
+2

(
Lλ2

))
ξ2L2

+
(
J−m

2
−1

(
Lλ2

)
− J−m

2
+1

(
Lλ2

))
L

]
Γ
(
1− m

2

)
+ c+

[((
Jm

2
−2

(
Lλ2

)
− 2Jm

2

(
Lλ2

))
+ Jm

2
+2

(
Lλ2

))
ξ2L2

+
(
Jm

2
−1

(
Lλ2

)
− Jm

2
+1

(
Lλ2

))
L

]
Γ
(
1 +

m

2

))
.

(3.31)

The full expression now takes the form

LV1 = 2tξ2p+ µV c
0 − p− 2Dt∂2

ξV0 . (3.32)
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