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1 INTRODUCTION

This report details an investigation of a gene regulatory
network’s (GRN’s) dynamics to explore trends in the fi-
nal genotypes for a variety of starting phenotypes. Steven
Gould postulated that if one were to rerun the evolution-
ary process, the outcome and diversity of life would be
vastly different;[1] however, much work has been done to
understand convergent evolution and how similar pheno-
types can evolve through independent pathways.[2] Multi-
ple genotypes can correspond to the same phenotype lead-
ing to a many-to-one mapping from the genotype space to
the phenotype space. These genotypes may depend on their
ancestral genotypes and the path through the phenotype
space traversed. By restarting and rerunning the evolution-
ary process while selecting the same phenotype, a variety of
different genotypes can be accessed. Many mechanisms gov-
ern the gene interactions in three gene topologies and they
can be classified into six distinct mechanisms.[3] We inves-
tigate the obtained genotypes for three of the fundamental
mechanisms: bistable, classical and the frozen oscillator de-
picted in figure 1.

Figure 1: The three gene topology using three distinct mech-
anisms to generate the stripe pattern with arrows indicating:
morphogen inputs, inhibitions and activations.

A series of coupled ordinary differential equations are
used to describe the dynamics of GRNs and they are fre-
quently used in evolutionary studies to capture gene ex-
pression and protein concentrations. [4] We consider a sim-
ple three-gene topology consisting of a red, a blue and a
green gene that have activators and inhibitors acting be-
tween them. These interactions can be stored as a 3 × 3
square matrix and each entry can be mutated to obtain a
new genotype during evolution.

In this project, the green gene acts as an output and
the weights that govern the interactions between the genes
are chosen to generate a stripe pattern. These weights were
then mutated and a particular phenotype was selected. By
analysing how these weights evolve and examining the distri-
butions of the final weights, we investigate how the distance
between the initial and selected phenotypes, ∆P affects the

final weights and the path that is traversed in the phenotype
space for the bistable mechanism. From this, we hope to elu-
cidate the role of stochasticity in evolution and understand
common relationships between genotypes when rerunning
the evolutionary process. We also aim to understand how
a genotype’s past constrains its future by determining how
the spread of the gene interaction weights varies with ∆P .
[5]

2 METHODS

The procedure to carry out the evolutionary process is illus-
trated in figure 2. Firstly, we solved the GRN for the steady
state, this was done numerically by solving the equation

dgij
dt

= ϕ(χ(

3∑
l=1

W ilglj +M))− λgij (1)

where χ is a heaviside function and ϕ is a Michaelis-Menten
function.[6] This equation encompasses the interaction be-
tween the genes in the summation over a column of weights,
W , the morphogen input in M and a degradation rate in λ.

Figure 2: Flowchart illustrating the procedure for generating
the stripe, evolving the system and implementing selection.

The morphogen input into the genes was determined by
solving the diffusion equation for a single morphogen input
in the leftmost cell,[7] this generated an exponentially decay-
ing gradient that was passed into a specified gene (depend-
ing on the mechanism). The stripe was then generated and
defined by a continuous region consistently above half the
maximum concentration with its ends being at least below
half of the maximum value. The phenotypes of the system,
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being the position and width of the stripe, were then calcu-
lated.

We then implemented mutation by varying components
of W . After this, the stripe was regenerated and its phe-
notypes were recalculated. The Euclidean distance between
the calculated phenotypes and phenotypes being selected
for was calculated (taking into account the usual deviations
in each phenotype component) and compared to the previ-
ous distance. If this distance was less than the last, the
mutation was accepted, otherwise, it was rejected. This
process repeats until the phenotype distance falls below a
given threshold. This process was repeated for 100 samples
for nine different values of ∆P for the bistable mechanism.
The final weights were compared against each other for each
genotype to determine correlations between them. For ones
that did correlate linearly a line of best fit was created and
its parameters were recorded.

3 RESULTS

For the bistable mechanism, it was found that it has negative
correlations between the final weights of blue-blue activation
and the green-blue inhibition, and the red-green inhibition
and the blue-green activation. This is shown in the plots
between pairs of weights in figure 3a. It can also be seen
that the other pairs have no correlation between them indi-
cating that these two pairs of weights change independently
throughout the evolution process.

It can be seen from figure 3b that the standard devia-
tions of the final weights increase with an increase in ∆P ,
but seems to maximise at approximately 2 units. Due to
the weight correlations between the blue-blue activation and
green-blue inhibition, both plots show similar shapes. The
same is true for the red-green inhibition and the blue-green
activation. It can also be seen that the graphs in each row
are horizontal mirror images of one another.

In the weight correlations, the parameters for a line of
best fit were calculated and displayed in figure 3c against
∆P . It was found that the gradient and intercept parame-
ters tended to decrease with an increase in distance for the
blue-blue against green-blue weight comparison. The gradi-
ent parameter range in the blue-blue against green-blue is
greater than that of the red-green against blue-green weight
comparison, the converse is valid for the intercept.

4 DISCUSSION

By analysing different mechanisms we determined linear cor-
relations between pairs of weights which means that they
must change together. The bistable mechanism was pri-
marily analysed due to numerical issues with the other two
mechanisms and showed negative correlations between evo-
lutionary runs between the blue-blue activation and green-
blue inhibition as well as red-green inhibition and blue-green
activation. If the concentration of the green gene decreases
the blue gene would increase, in order to prevent too much
of it from being produced blue activation of itself would de-
crease with it. Similarly, if the red inhibition of the green
gene decreases the concentration of the green gene would
increase, to prevent too much of the green gene the blue
activation of green should also decrease. From figure 3c it
can be seen that for the blue-blue against green-blue cor-

relation the magnitude of the gradient increases with ∆P .
This could be because the spread of the final weights in the
blue-blue activation grows at a greater rate than that of the
final weights of the green-blue inhibition.

(a)

(b) (c)

Figure 3: a) Pairwise correlation diagram of weights for the
bistable mechanism for a distance between the initial phe-
notype and selected phenotype of 2.409. b) Distribution of
weights for the bistable mechanism for varying distances. c)
Distribution of parameters for the bistable mechanism when
fitting the correlation of weights to a line.

If this project were to be taken further one could explore
how using correlations of the weights leads to the same geno-
types with reduced degrees of freedom. The genotype space
for the bistable mechanism would also be reduced from four
dimensions to two so a genotype space could be easily vi-
sualised and analysed. One could also incorporate adding
additional gene interactions by adding small amounts to zero
values in the weight matrix when mutating. This could be
useful in understanding the evolvability of the network and
how it can transition to another fundamental mechanism.
By doing this, correlations between weights corresponding
to different mechanisms could be found and investigated to
further enhance our understanding of convergence in evolu-
tion.
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